Reaction Mechanism In Organic Chemistry By Mukul C Ray Pdf 234
LINK ===== https://bytlly.com/2sXJjr
Recently, research on QD solids has attracted interest because one cannot use the as-prepared colloidal QDs for applications requiring electrical transport properties due to the poor inter-dot charge transport mechanism. By interconnecting the QDs together, one can prepare a solid system with the desired absorption and emission properties. It is even possible to prepare an alternative material to silicon by this method. However, the preparation of such QD solid structures is a challenging process and, to the best of our knowledge, only a few reports are available on the successful preparation of QD solid systems, mostly involving inorganic systems such as PbS, CdSe and PbSe31,32,33,34. As far as such QD solid preparation is concerned, different shaped/faceted nanocrystals made up of heavier elements were interconnected with lighter organic/inorganic groups by slow evaporation and ligand exchange processes35. Such inorganic QD solid systems are weakly coupled and sensitive to external parameters such as temperature, thus limiting the effective utilization of the QD solid systems. The strong coupling between QDs is required for the effective usage of QD solid systems in a wide range of applications such as terahertz lasing and quantum computing35, 36. In the present work, we have successfully prepared GQD solid sheet structures of a single-crystalline nature by interconnecting GQDs with metal atoms. Since the basic building block (GQD) is made up of a light element and is of planar dimensions, it was possible to interconnect them through heavier metal atoms, and thus a stronger coupling is established between the GQDs. Oxygen has also played an important role in the interconnection process. The isolated sp2 domains were created in the interconnection process, which in turn helped to retain the quantum behaviour of the individual dots in the solid sheet. As a consequence, a new material system of graphene with a band gap was made possible. In this present paper, we discuss these results in detail.
This Botanical Briefing reviews how the integration of palaeontology, geochemistry and developmental biology is providing a new mechanistic framework for interpreting the 40- to 50-million-year gap between the origination of vascular land plants and the advent of large (megaphyll) leaves, a long-standing puzzle in evolutionary biology. Molecular genetics indicates that the developmental mechanisms required for leaf production in vascular plants were recruited long before the advent of large megaphylls. According to theory, this morphogenetic potential was only realized as the concentration of atmospheric CO2 declined during the late Palaeozoic. Surprisingly, plants effectively policed their own evolution since the decrease in CO2 was brought about as terrestrial floras evolved accelerating the rate of silicate rock weathering and enhancing sedimentary organic carbon burial, both of which are long-term sinks for CO2. The recognition that plant evolution responds to and influences CO(2) over millions of years reveals the existence of an intricate web of vegetation feedbacks regulating the long-term carbon cycle. Several of these feedbacks destabilized CO2 and climate during the late Palaeozoic but appear to have quickened the pace of terrestrial plant and animal evolution at that time.
The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms. PMID:22232763
The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.
NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983
The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine
Kelvin considered it unlikely that sufficient time had elapsed on the earth for life to have reached its present level of complexity. In the warm surroundings in which life first appeared, however, elevated temperatures would have reduced the kinetic barriers to reaction. Recent experiments disclose the profound extent to which very slow reactions are accelerated by elevated temperatures, collapsing the time that would have been required for early events in primordial chemistry before the advent of enzymes. If a primitive enzyme, like model catalysts and most modern enzymes, accelerated a reaction by lowering its enthalpy of activation, then the rate enhancement that it produced would have increased automatically as the environment cooled, quite apart from any improvements in catalytic activity that arose from mutation and natural selection. The chemical events responsible for spontaneous mutation are also highly sensitive to temperature, furnishing an independent mechanism for accelerating evolution. PMID:25210030 2b1af7f3a8